The odds are slim, but a new analysis shows it’s possible.
The most surefire way to confirm a wormhole’s existence would be to directly prod a black hole and see if it’s hiding a bridge to elsewhere, but humanity may never have that opportunity. Even so, researchers could rule out some of the most obvious scenarios from Earth. If the monster black hole residing in the churning center of the Milky Way, for instance, is more door than dead end, astronomers could tease out the presence of something on the other side.
To make such a mission even more quixotic, most physicists agree that human-traversable, sci-fi-style bridges can’t exist. The only way to fight their natural tendency to collapse, according to Einstein’s equations, is to put in a type of repulsion that other laws of physics forbid on large scales—negative energy . Stojkovic says he and his collaborators avoided such “hocus pocus” in their previous work, describing a wormhole that would work in our universe.
Any resultant swerves S2 might make would be slight, but after more than 20 years of observation astronomers have clocked the star’s acceleration to four-decimal-place precision. With roughly 100 times more accuracy than that, Stojkovic estimates, astronomers would have the sensitivity to test his wormhole hypothesis—a benchmark he says current experiments should naturally reach in a couple more decades of data collection.